A cone with a radius 2 units is shown below. Its volume is 29 cubic units. Find the height of the cone

Accepted Solution

Answer:The height of the cone is [tex]6.9\ units[/tex]Step-by-step explanation:we know thatThe volume of the cone is equal to[tex]V=\frac{1}{3}Bh[/tex]where B is the area of the circular base of the coneh is the height of the coneIn this problem we have [tex]V=29\ units^{3}[/tex] [tex]r=2\ units[/tex]Find the area of the base B[tex]B=\pi r^{2}[/tex]substitute the value of r[tex]B=\pi (2)^{2}=4 \pi\ units^{2}[/tex]Find the height of the cone[tex]29=\frac{1}{3}(4 \pi)h[/tex][tex]h=29*3/(4 \pi)[/tex]assume [tex]\pi=3.14[/tex][tex]h=29*3/(4*3.14)=6.9\ units[/tex]